Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat.
نویسندگان
چکیده
Superoxide is the proximal reactive oxygen species (ROS) produced by the mitochondrial respiratory chain and plays a major role in pathological oxidative stress and redox signaling. While there are tools to detect or decrease mitochondrial superoxide, none can rapidly and specifically increase superoxide production within the mitochondrial matrix. This lack impedes progress, making it challenging to assess accurately the roles of mitochondrial superoxide in cells and in vivo. To address this unmet need, we synthesized and characterized a mitochondria-targeted redox cycler, MitoParaquat (MitoPQ) that comprises a triphenylphosphonium lipophilic cation conjugated to the redox cycler paraquat. MitoPQ accumulates selectively in the mitochondrial matrix driven by the membrane potential. Within the matrix, MitoPQ produces superoxide by redox cycling at the flavin site of complex I, selectively increasing superoxide production within mitochondria. MitoPQ increased mitochondrial superoxide in isolated mitochondria and cells in culture ~a thousand-fold more effectively than untargeted paraquat. MitoPQ was also more toxic than paraquat in the isolated perfused heart and in Drosophila in vivo. MitoPQ enables the selective generation of superoxide within mitochondria and is a useful tool to investigate the many roles of mitochondrial superoxide in pathology and redox signaling in cells and in vivo.
منابع مشابه
Complex I is the major site of mitochondrial superoxide production by paraquat.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) is widely used as a redox cycler to stimulate superoxide production in organisms, cells, and mitochondria. This superoxide production causes extensive mitochondrial oxidative damage, however, there is considerable uncertainty over the mitochondrial sites of paraquat reduction and superoxide formation. Here we show that in yeast and mammalian...
متن کاملRedox Regulation of the AMP-Activated Protein Kinase
UNLABELLED Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death. OBJECTIVES The aim of this study is to determine if AMP-activated protein kinase (AMPK), a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC). METHODS Bovine aortic endothelial cells (BAEC) were exposed to Berberine. AMP...
متن کاملTeaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies
Reactive oxygen species (ROS) have been implicated in tumorigenesis (tumor initiation, tumor progression, and metastasis). Of the many cellular sources of ROS generation, the mitochondria and the NADPH oxidase family of enzymes are possibly the most prevalent intracellular sources. In this article, we discuss the methodologies to detect mitochondria-derived superoxide and hydrogen peroxide usin...
متن کاملCancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst.
AIMS Here, we develop a novel cancer treatment modality using mitochondria-targeting, high-fluence, low-power laser irradiation (HF-LPLI) in mouse tumor models and explore the mechanism of mitochondrial injury by HF-LPLI. RESULTS We demonstrated that the initial reaction after photon absorption was photosensitization of cytochrome c oxidase (COX), to inhibit enzymatic activity of COX in situ ...
متن کاملEffects of hypoxia on relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in coronary arterial smooth muscle.
Since controversy exists on how hypoxia influences vascular reactive oxygen species (ROS) generation, and our previous work provided evidence that it relaxes endothelium-denuded bovine coronary arteries (BCA) in a ROS-independent manner by promoting cytosolic NADPH oxidation, we examined how hypoxia alters relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Free radical biology & medicine
دوره 89 شماره
صفحات -
تاریخ انتشار 2015